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Abstract: Although lidar data are widely available from commercial contractors, operational use in North America is still
limited by both cost and the uncertainty of large-scale application and associated model accuracy issues. We analyzed
whether small-footprint lidar data obtained from five noncontiguous geographic areas with varying species and structural
composition, silvicultural practices, and topography could be used in a single regression model to produce accurate esti-
mates of commonly obtained forest inventory attributes on the Nez Perce Reservation in northern Idaho, USA. Lidar-
derived height metrics were used as predictor variables in a best-subset multiple linear regression procedure to determine
whether a suite of stand inventory variables could be accurately estimated. Empirical relationships between lidar-derived
height metrics and field-measured dependent variables were developed with training data and acceptable models validated
with an independent subset. Models were then fit with all data, resulting in coefficients of determination and root mean
square errors (respectively) for seven biophysical characteristics, including maximum canopy height (0.91, 3.03 m), mean
canopy height (0.79, 2.64 m), quadratic mean DBH (0.61, 6.31 cm), total basal area (0.91, 2.99 m2/ha), ellipsoidal crown
closure (0.80, 0.08%), total wood volume (0.93, 24.65 m3/ha), and large saw-wood volume (0.75, 28.76 m3/ha). Although
these regression models cannot be generalized to other sites without additional testing, the results obtained in this study
suggest that for these types of mixed-conifer forests, some biophysical characteristics can be adequately estimated using a
single regression model over stands with highly variable structural characteristics and topography.

Résumé : Même si les données lidar sont largement disponibles auprès de compagnies commerciales, leur utilisation
opérationnelle en Amérique du Nord demeure encore limitée tant à cause des coûts que de l’incertitude pour une appli-
cation à grande échelle et des problèmes d’exactitude associés à la modélisation. Les auteurs ont analysé si les données
lidar à petite empreinte au sol obtenues pour cinq régions géographiques non contiguës qui variaient en compositions
spécifique et structurale, pratiques sylvicoles et topographie pouvaient être utilisées dans un modèle de régression
unique pour produire des estimations exactes des attributs communément obtenus lors d’inventaires forestiers dans la
réserve de Nez Perce située dans le nord de l’Idaho, aux É.-U. Les mesures de hauteur dérivées du lidar ont été utili-
sées comme variables prédictives dans une procédure de régression linéaire multiple du meilleur sous-ensemble pour
déterminer si un ensemble de variables d’inventaire à l’échelle du peuplement pouvaient être estimées avec exactitude.
Les relations empiriques entre les mesures de hauteur dérivées du lidar et les variables dépendantes mesurées sur le
terrain ont été développées avec des données d’entraînement et des modèles acceptables validés avec un sous-ensemble
indépendant. Les modèles ont ensuite été dérivés avec toutes les données, ce qui a produit des coefficients de détermi-
nation et des erreurs quadratiques moyennes (respectivement) pour sept caractéristiques biophysiques incluant : la hau-
teur maximale du couvert (0,91, 3,03 m), la hauteur moyenne du couvert (0,79, 2,64 m), le DHP moyen quadratique,
(0,61, 6,31 m), la surface terrière totale (0,91, 2,99 m2/ha), la fermeture ellipsoïdale du couvert (0,80, 0,08 %), le vo-
lume total de bois (0,93, 24,65 m3/ha) et le volume de gros bois de sciage (0,75, 28,76 m3/ha). Même si ces modèles
de régression ne peuvent pas être généralisés à d’autres sites sans tests additionnels, les résultats obtenus dans cette
étude indiquent que, pour ces types de forêts mélangées résineuses, quelques caractéristiques biophysiques peuvent être
estimées adéquatement par l’utilisation d’un modèle de régression unique pour des peuplements dont les caractéristi-
ques structurales et la topographie sont très variables.
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Introduction

An accurate evaluation of any forest stand is central to
forest and wildlife land management, as it assists in deter-
mining forest inventory, wildlife habitat requirements, and
disease and pest hazards. An important tool aiding land
managers with this task is the implementation and analysis
of remotely sensed data. Numerous studies throughout the
past several decades have described, with increasingly posi-
tive results, the ability of single- and multiple-return lidar-
derived height metrics to estimate canopy height and other
specific forest characteristics such as volume, basal area, and
stem density (Aldred and Bonner 1985; Maclean and Krabill
1986; Nelson et al. 1988; Means et al. 2000; Lefsky et al.
2001; Naesset and Bjerknes 2001; Naesset 2002; Holmgren
et al. 2003; Lim et al. 2003a; Omasa et al. 2003; Holmgren
2004; Maltamo et al. 2004; Suarez et al. 2005).

Lidar, which stands for light detection and ranging, is an
active sensor that measures the time between laser pulse
emission over a target and subsequent return to the sensor.
There are two distinct forms of lidar remote sensing: wave-
form (large footprint) and discrete return (small footprint).
The differences between waveform and discrete-return lidar
involve the area actively sensed by the laser pulse and the
spatially explicit information returned to the sensor. Wave-
form lidar sensors typically have a footprint, or horizontal
scan area, 8–70 m in diameter (Lim et al. 2003b) and mea-
sure the temporal change in intensity of the returned energy,
resulting in a documentation of the height distribution of the
specified target (Dubayah and Drake 2000).

Discrete-return lidar sensors operate by rapidly emitting a
laser pulse toward a target (e.g., a forest stand) and record-
ing the time, location, and quantity of the reflected energy.
The sensor is mounted on an aircraft in conjunction with
a highly accurate GPS and an inertial measurement unit
(IMU), which allows correction in data processing caused by
the attitude (pitch, roll, and yaw) of the aircraft. The aircraft
is then flown over the area of interest, and the lidar sensor
emits a series of high-frequency near-infrared (900–
1064 nm) pulses over the region. As the pulses are reflected
from a target and the energy returns to the sensor, a record
of the geographic coordinates and time from leaving the sen-
sor and returning to the aircraft is generated. Early systems
only recorded one returned pulse, but most current multi-
return sensors record multiple returns from a single laser
pulse (Lefsky et al. 2002). For a more detailed description of
laser pulse interactions with forest canopies, the reader is re-
ferred to Lim et al. (2003b).

Two forest measurements most commonly estimated with
lidar are maximum height and mean canopy height (Naesset
1997; Naesset and Okland 2002). This is likely due to the
close relationship between those surface characteristics and
the quantities directly measured by a laser scanner (Maclean
and Krabill 1986; Magnussen and Boudewyn 1998; Lim et
al. 2003b). Several studies have also been developed with
the goal of predicting vertical canopy structure (Ritchie et
al. 1993; Zimble et al. 2003). Canopy structure, as defined
in this paper, is the quantification of dimensional measure-
ments of tree height and associated characteristics. Such
characteristics are significant, as they provide knowledge of
size-class distribution and total biomass for a given region

(Lefsky et al. 1999). Measurement and inventory of such
variables can aid in the characterization of a range of land
management decisions, such as defining existing or potential
wildlife habitat and quantifying carbon storage and source
potential.

Although recent research continues to affirm the useful-
ness of lidar data for deriving canopy-related forest charac-
teristics, most studies demonstrating the effectiveness of
small- and large-footprint lidar-derived height metrics for es-
timating biophysical characteristics have been limited to
rather homogeneous geographic areas dominated by single
or codominant species in relatively even-aged forest stands
and uniform management scenarios. Few studies have been
published that use lidar-derived height metrics to estimate
stand characteristics in mixed-conifer forests with highly
variable stand structure, species composition, and topo-
graphic conditions. Parker and Evans (2004) documented the
utility of lidar-derived height metrics to model volume and
biomass within stands composed of mixed-conifer species.
Zimble et al. (2003) examined the relationship between lidar
height metrics and vertical stand structural classifications for
a mixture of six coniferous species. Naesset et al. (2005) de-
veloped empirical models to estimate stand characteristics
from two separate inventories of young and mature forest
stands of varying site quality and topography. However, in
addition to species composition and topography, variation in
silvicultural practices across a region can also factor into the
ability of height metrics to predict biocharacteristics, in that
tree size and density can be highly spatially variable in ac-
tively managed areas. This subject was taken into consider-
ation by Andersen et al. (2005), who distributed sample
plots throughout their study site, which was located in an
ongoing experimental silvicultural trial with stands of vary-
ing age and density.

Lefsky et al. (2005) applied lidar data from a large-
footprint system to predict stand structural characteristics
based on a composite sample of wide-ranging species, cli-
matic, and topographic characteristics obtained from five
distinct geographic locales in the Pacific Northwest. We
present an analogous study, albeit with a smaller spatial ex-
tent, to estimate heterogeneous stand structural characteris-
tics using data obtained from a small-footprint lidar sensor
over a set of separate geographic study units.

Lidar data are widely available from commercial contrac-
tors; however, operational use in North America is still lim-
ited by both economic cost and scientific uncertainty. Nelson
et al. (2003) cite data acquisition and processing costs as
well as assessment of large-scale application and associated
accuracy issues as primary concerns. Although alternate sta-
tistical methods such as geostatistical analysis (Hudak et al.
2002) and imputation (Moeur and Stage 1995; Ohman and
Gregory 2002; Maltamo et al. 2003) have been applied to
predict forest biocharacteristics, regression analysis has
proved to be a consistent and reliable statistical method for
quantifying the relationship between lidar-derived height
metrics and physical forest inventory variables. However, the
range of stand and topographic conditions over which a sin-
gle regression model can adequately estimate biophysical
characteristics is not well understood.

The primary objective addressed in this paper was to de-
termine whether small-footprint lidar data obtained from
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noncontiguous geographic areas with varying species and
structural compositions, silvicultural practices, and topogra-
phy could be used in a single regression model to produce
accurate estimates of commonly obtained forest inventory
attributes on the Nez Perce Reservation in northern Idaho.

Materials and methods

Study area
Forested regions of the Nez Perce Reservation in northern

Idaho exhibit stand characteristics similar to those of most
coniferous landscapes found in the western United States,
particularly the Northern Rockies. The Nez Perce Tribe
manages approximately 22 250 ha of mixed-conifer forests.
Stands are typically populated by one or two prominent spe-
cies; however, such stands can include up to five or more co-
nifer species as part of the overall composition. Additionally,
depending on silvicultural prescriptions, forest understory
can be quite dense, thus affecting the ability of lidar postpro-
cessing algorithms to accurately determine the true ground
surface.

Lidar data were acquired for roughly 13 350 ha of both
continuous and discontinuous forest stands. Given the wide
array of stand characteristics and conditions found on the
Nez Perce Reservation, selection of units to be studied with
the lidar data acquisition was guided by selecting units con-
taining stands whose size, density, and species composition
incorporated as wide a range of stand conditions as possible
throughout the reservation. Analysis of said criteria resulted
in a selection of five separate geographic study units on the
reservation. A map detailing the location of the Nez Perce
Reservation and the study units for which lidar data were ac-
quired is provided in Fig. 1.

Range of forest characteristics present in study units
A more detailed description of the field plots used for de-

velopment and validation of the regression models will be
provided in a later section. However, an overview of the data
from those field plots, which were selected to be representa-
tive of the forested regions on the reservation, provides some
information on the range of stand conditions included in this
study. In Fig. 2a, mean tree height and stem density are plot-
ted for each of the field plots, along with information on the
dominant tree species (where one species could be identified
as dominant). Conifer species present in varying quantities
throughout the study units include Pseudotsuga menziesii
(Mirb.) Franco (PM), Pinus ponderosa Dougl. ex P. & C.
Laws. (PP), Abies grandis (Dougl. ex D. Don) Lindl. (AG),
Larix occidentalis Nutt. (LO), Pinus contorta Dougl. ex
Loud. (PC), Picea engelmanni Parry ex Engelm. (PE), Taxus
brevifolia Nutt. (TB), and mixed conifer (CX). Species dom-
inance is characterized as the overall species majority per
field plot, analogous to the majority of stems per hectare.
Species-specific basal area calculations confirmed domi-
nance designations. Dominant species composition is sum-
marized in Fig. 2b for all plots used in the analysis.
Univariate statistics for mean canopy height, diameter at
breast height (DBH), and total wood volume for individual
study units are provided in Table 1 and topographic charac-
teristics are provided in Table 2.

Lidar data acquisition and processing
Lidar data were collected on 13 and 26 July 2002 by

Spencer B. Gross, Inc., of Portland, Oregon, using a Leica
Geosystems ALS-40 mounted aboard a Cessna 310. Average
plane velocity was 204 km/h at a mean altitude of 1828 m
(altitude above mean terrain). Data acquisition consisted of a
scan angle parameter of ±12.5°, a 60 cm footprint, and an
average post spacing of 2 m. Pulse and scan rates were 20
and 17.1 kHz, respectively, and flight lines consisted of 30%
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Fig. 1. Lidar study units (1–5) located on Nez Perce Reservation in north-central Idaho, USA.



overlap to ensure adequate coverage. Vertical accuracies,
provided by the vendor, were determined by establishing a
38-point three-dimensional target array for bore-sight valida-
tion. The target array was constructed near the GPS base sta-
tion located at the Lewiston – Nez Perce airport in Lewiston,
Idaho (National Geodetic Survey point AC5214). Root mean
square errors (RMSE) for the 13 and 26 July missions were
reported by the vendor as 0.141 and 0.159 m, respectively.

Although the detailed processing procedures performed
by the vendor are proprietary, preprocessing consisted of en-
suring that lidar data met acquisition specifications and that
flight line to flight line alignment in x–y–z coordinates for
overlap areas was consistent and correct. Postprocessing per
flight line involved analysis of cross-sectional lidar point
clouds in TerraScan (TerraSolid) to establish terrain parame-
ters for each site. Semiautomatic feature (i.e., vegetation) re-
moval was initially performed, followed by manual editing
using TerraScan and an in-house software algorithm to re-
move remnant features. The final step evaluated hillshades
of the processed data for visual inspection. The vendor
joined and retiled the flight lines into delivery blocks and
converted the data from binary to x–y–z ASCII and ESRI
shapefiles.

Spencer B. Gross, Inc., delivered both the raw data
(ASCII format) and postprocessed data sets, which consisted
of merged flight lines, in both vector and 5 m gridded for-
mats. The vendor provides two primary postprocessed prod-
ucts: (1) a digital terrain model (DTM), composed of heights
corresponding to last and “only” returns, and (2) a surface
elevation model (SEM), consisting of first and “only” re-
turns.

One of the objectives of the overall project (of which this
study was a part) was to evaluate the utility of commercially
available products for deriving canopy structure, as opposed
to developing new algorithms to process the raw data. The
vector point-based DTMs provided by the vendor were con-
verted to triangular irregular networks (TINs). Vegetation
heights were computed by subtracting the ground elevation
(as interpolated from the TIN) from the absolute heights pro-
vided in the SEM.

Ground data acquisition and processing
Field plots were selected to be representative of the wide

range of forest characteristics contained within the units over
which the lidar data were acquired. For each of the five
study units, stand-level forest inventory data were used to
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Fig. 2. (a) Dominant conifer species per 0.08 ha field plot char-
acterized by stem density versus mean tree height. (b) Percent
composition for all plots, classed by dominant species.

Study unit

1 2 3 4 5

Mean height (m)
Min. 3.69 6.23 7.64 5.37 6.29
Mean 19.95 (5.70) 12.32 (3.65) 17.50 (5.07) 15.10 (8.17) 16.19 (6.93)
Median 18.87 15.50 17.79 14.74 15.84
Max. 27.72 17.15 24.45 32.37 29.50

Quadratic mean DBH (cm)
Min. 15.24 13.98 17.18 13.72 14.80
Mean 35.01 (9.52) 27.17 (13.00) 34.62 (9.84) 32.53 (16.41) 30.92 (11.32)
Median 34.84 24.70 36.39 34.49 28.56
Max. 61.48 78.74 44.50 64.35 50.29

Total volume (m3/ha)
Min. 0.25 2.22 7.54 0.12 0.74
Mean 160.15 (102.19) 69.40 (69.52) 113.11 (137.71) 84.94 (92.56) 85.25 (79.84)
Median 157.79 61.53 65.11 50.66 63.26
Max. 390.63 229.92 430.44 306.65 254.26

Table 1. Univariate descriptive statistics of selected ground metrics for individual study units (standard
deviation in parentheses).



first stratify the area by size (quantified by DBH size class),
density (as estimated by canopy closure), and species com-
position. Then, field plots were selected to represent the
range of tree species, size, and density, in proportion to their
occurrence as much as was practical. Some of the field plots
were existing plots over which data had been acquired at
regular intervals for decades. New plots were selected ran-
domly within stands that met appropriate criteria for species,
size, and density in the stand-level stratification to ensure
adequate representation of all stand characteristics.

Forest inventory crews collected field data for 110 plots
with a fixed radius of 16.1 m (0.081 ha) from August 2002
through October 2002. A Trimble ProXRS GPS unit re-
corded each plot center, and a Laser Technology Inc. im-
pulse laser unit connected to the GPS was used to measure
(x, y) tree coordinates and total tree height. Stem diameter
measurements were made with a standard DBH tape.

Field plot data were used to calculate 13 ground metrics
for each plot. Ground metrics consisted of maximum canopy
height, mean canopy height, mean and total basal area, ellip-
soidal crown closure, stem density, and total wood volume
(with three size class subsets). Ground metrics were entered
into the statistical analysis software (SAS Institute Inc.
2004) package as dependent variables in the regression anal-
ysis. The ground metrics computed from the field data for
each ground plot are summarized in Table 3.

Although 110 field plots were measured for this study,
only those plots that possessed measurable tree data (e.g. at
least one tree with DBH ≥12.7 cm) were used for analyzing
dependent variables. Parameters for field data collection
were based on standard inventory procedures used for the
Continuous Forest Inventory (CFI) system as developed by
the Bureau of Indian Affairs (Branch of Forest Research
Planning 1983). A diameter limit of 12.7 cm (5 in.) is used
as the lower limit of pole-sized timber, with the upper limit
of sapling-sized trees being 12.69 cm, as based on standard
tree size classes. Using the same tree-size classification sys-
tem allows comparison of results for field measurements
versus optical remote sensing data interpretation.

Lidar metrics
The lidar-derived heights within each of the field plots

were extracted based on a 16.1 m radial buffer generated
from the field plot centerpoints and entered in a database for
statistical analysis. Lidar-derived metrics were calculated
based on height distributions in individual plots. A total of
21 lidar metrics were calculated and included number of all
vegetation heights in the plot, mean, variance, coefficient of
variation, and the percentage of heights within specified
height intervals. The same metrics were also calculated for
all heights above 1.37 m, with the exception of percent
heights, which were intended to represent pulse coverage (as
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Study area

1 2 3 4 5

Elevation (m)
Range 277–910 807–1479 946–1133 1204–1397 1173–1323
Mean 595.49 1311.74 1083.70 1267.58 1236.03

Slope (°)
Range 0–78.44 0–72.64 0–78.36 0–55.83 0–56.16
Mean 18.81 13.67 9.97 8.08 10.02

Table 2. Descriptive statistics of topographic conditions for study areas.

Ground metric Description Label

Maximum canopy height (m) Maximum tree height for each plot HMax

Mean canopy height (m) Average tree height in each plot HMean

Lorey’s mean tree height (m) Σ (gH)/ΣG, where g is tree basal area, H is height, and G is total plot basal area HL

Quadratic mean DBH (cm) [( )/ ]∑ DBH2 2 where n is stems per plot DBHMean

Mean DBH (cm) (ΣDBH)/n DBHAvg

Total basal area (m2/ha) [(πDBH2)/4]/0.0809 BATotal

Mean basal area (m2/ha) G/n, where G is total plot basal area and n is stems per plot BAMean

Ellipsoidal crown closure (%) (πAB)/809.4, where A is radius of ellipse in x direction, B is radius of ellipse in
y direction, 809.4 is plot area in m2

ECC

Total wood volume (m3/ha) Varies by species and location, calculated from volume equations VOLHTotal

Volume pole (m3/ha) Varies by species and location, calculated from volume equations
(Pole: 12.7–22.61 cm DBH)

VOLHPole

Volume small saw (m3/ha) Varies by species and location, calculated from volume equations
(Small saw: 22.62–50.55 cm DBH)

VOLHSmsaw

Volume large saw (m3/ha) Varies by species and location, calculated from volume equations
(Large saw: 55.56 cm DBH)

VOLHLrgsaw

Stem density (stems/ha) Count of trees in plot SD

Table 3. Ground metrics calculated from field data obtained for each 0.08 ha plot.



a surrogate of canopy cover) within the intermediate canopy
structure (Table 4). Height-threshold subclasses associated
with percent height metrics correspond to standard tree-size
diameter breaks derived from tree height and diameter re-
gressions developed by the Nez Perce Tribal Forestry De-
partment. The same rationale applied to the selection of
1.37 m as a height threshold for upper-story canopy metrics,
as 1.37 m was the minimum height associated with the mini-
mum DBH of measured trees.

Training and validation data sets
Approximately two-thirds of each study unit’s plots was

used for model parameterization. Plot selection for model
training and validation was based on a stratified random
sampling of size (mean height per plot), density (stems per
plot), and species composition (dominant and codominant
species per plot) to derive a final data set of 64 training and
28 validation plots.

Model identification and analysis
The best subset regression procedure was chosen for anal-

ysis based on the ability of the user to identify suitable mod-
els, based on a comprehensive knowledge of the data and a
sense for the capacity of individual models to be applied
later to separate data sets (e.g., an individual geographic
area), as opposed to a stepwise selection procedure, which
risks exploiting data anomalies and can fail when applied to
independent datasets. In our implementation of the best-
subset selection method, a two-phase approach was imple-
mented. Using the SAS PROC REG regression procedure,
for a given number of covariates, the best seven models with
the highest coefficients of multiple determination (R2) were
chosen. Although P independent variables does result in 2P – 1
possible models, the number of acceptable models was re-
duced substantially upon quick review based on numerous
preliminary selection parameters, including R2 and RMSE,
Mallows’s Cp statistic (Mallows 1973), Akaike information
criterion (AIC) (Akaike 1969) for models with one inde-

pendent variable, and adjusted AIC (AICc) (Sugiura 1978)
for models with an observation and parameter ratio of n/k <
40. Model selection criteria were guided by comparisons of
initial model performance. For example, empirical relation-
ships that resulted in high R2 and low RMSE were evaluated
as candidate models. Further, potential models would exhibit
a low Cp value; such subsets of model covariates indicate a
low total mean square error and when Cp is near P for a
given model, the bias of the regression relationship is mini-
mized. AIC and AICc are information criteria that address
model dimensionality and can provide a relative comparison
of the effects of covariate multicollinearity by penalizing the
criterion value as covariate terms are added to a model.
AICc was applied to account for our relatively small data set
used to develop the regression models. In general, relatively
low AIC or AICc values are desirable.

The second phase of model evaluation consisted of further
examining candidate models for individual variable signifi-
cance, lack of multicollinearity among covariates, adequacy
of residual plots, ease of covariate measurement, etc. Poten-
tial models were fit with selected lidar metrics and assessed
based on a maximum individual variable significance of 0.05
(α = 0.05), individual tolerance values exceeding 0.10, and
absolute homoscedasticity of model residuals. Tolerance is
defined as the inverse of the commonly computed variance
inflation factor (VIF) (Neter et al. 1985) and provides an as-
sessment of the degree of inflation among regression coeffi-
cients compared to when covariate terms are not linearly
related (Ott and Longnecker 2001). A tolerance value of 1.0
indicates no collinearity among covariates. Finally, residual
plots of fit models were evaluated to assess the assumption
of constant variance of estimation errors.

While best subset regression can be considered cumber-
some, the approach ensured final model selections were
based on a thorough analysis of individual variable and over-
all model significance as well as controlling variable
multicollinearity and homoscedasticity of model residuals.
Lidar and ground metrics from the two-thirds selection of
study area plots were used for model training. Lidar metrics
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Metric Threshold (m) Label

Total returns All points LN
Mean All points LHMean

Variance All points LHVar

Coefficient of variation All points LHCoef

Canopy percentiles All points CAN25ile, CAN50ile, CAN75ile, CAN95ile

% understory cover 0.03–1.37 LUSC
% canopy cover 1 1.38–10.67 LCCO1
% canopy cover 2 10.68–18.29 LCCO2
% canopy cover 3 18.30–28.96 LCCO3
% canopy cover 4 >28.96 LCCO4
Total % canopy cover >0.03 LCCOTOTAL
Upperstory returns >1.37 LUPPN
Upper-story mean >1.37 LUPPMean

Upper-story variance >1.37 LUPPVar

Upper-story coefficient of variation >1.37 LUPPCoef

Upper-story percentiles >1.37 LUPP25ile, LUPP50ile, LUPP75ile, LUPP95ile

Table 4. Lidar-derived height metrics calculated per plot, based on computed vegetation heights.



were implemented as independent variables to predict indi-
vidual, dependent ground metrics.

Results and discussion

Regression model performance
Final model selection based on the two-thirds training

data was validated with the remaining one-third subset. Of
the 13 original ground metrics, 11 dependent variables could
be modeled satisfactorily (R2 = 0.60) with training data, al-
though only 7 dependent variables maintained a consistent
R2 and RMSE relationship for the validation data set.
Models for which a validation data set explained less than
60% of data variability (R2 = 0.60) or that had an unaccept-
able RMSE were not considered for further analysis. Results
for model and validation data of all inventory variables are
summarized quantitatively in Table 5. The seven variables
for which both model and validation results were satisfac-
tory included maximum and mean canopy height, quadratic
mean DBH, total basal area, ellipsoidal crown closure, and
total and large saw-wood volume. All models developed us-
ing the training data set were highly significant (p < 0.0001).
The regression models recommended for quantification of
these seven stand inventory variables given similar site char-
acteristics were reparameterized using the entire data set.
Scatterplots of field-measured versus lidar-derived estimates
and recommended model equations are provided in Fig. 3a–
3g. All final models have a calculated significance of p <
0.0001.

Relationships between lidar metrics and dependent
variables

Models reported for maximum and mean canopy height
(HMax and HMean) include combinations of upper-canopy
height metrics, which can be expected given the relatively
coarse footprint and post spacing of the lidar sample data.
Lidar data acquired using a 60 cm footprint and 2 m post
spacing will rarely intercept the tree stem apex. Since maxi-
mum canopy height values obtained from laser scanning sys-
tems are surrogate measures of canopy height (Magnussen
and Boudewyn 1998), several upper-canopy height metrics

were necessary to account for the sampling error associated
with the data acquisition parameters as well as the variability
of stem densities and spatial configurations of stems within
each plot, an issue initially raised by Evans et al. (2001).

The dependent variable, DBHMean, is only indicative of a
moderate relationship between lidar-based height distribu-
tions and ground-based measurements and uses percent
cover metrics as well as the variation of canopy heights.
Similar variables are used in the estimation of BATotal and
ECC, suggesting that lidar-derived height metrics can ac-
count for a significant amount of the combined variance in
crown, stem diameter, and height relationships. The inclu-
sion of percent canopy cover metrics (LCCO1 and LCCO2)
suggests that ratio metrics of lidar height distributions per-
form a key role in estimating biocharacteristics that are in-
herently three-dimensional. Similarly, strong correlations are
also present between stand volume estimates and lidar-
derived mean laser height and percent canopy cover metrics.

Model selection and collinearity effects
Valid concerns arise regarding multicollinearity among in-

dependent variables for models with several terms. For this
study, tolerance (Neter et al. 1985), individual variable sig-
nificance, and AICc were assessed to measure the additive
effect of covariate terms for each model during the selection
process. These criteria effectively addressed the issue of cor-
related lidar-derived metrics selected for each model. The
method of best-subset regression allows an analyst to ex-
plore a greater combination of terms in potential models,
so that considerations such as tolerance can be taken into
account when choosing a final model. Other selection proce-
dures such as stepwise selection conclude with a single se-
lected model that may have undesirable features such as
multicollinearity, poor residual plots, etc. The multi-
collinearity criteria adopted in this analysis were individual
variable significance (p ≤ 0.05), tolerance greater than 0.1
(VIF ≤ 10), and low AICc. These criteria were satisfied for
all models fitted with the training data set; however, two ex-
ceptions were noted when models were reparameterized us-
ing the entire data set. Parameterization of DBHMean and
ECC models both resulted in one covariate term slightly ex-
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Dependent variable Model R2 Model RMSE Validation R2 Validation RMSE

HMax 0.93 3.219 0.89 3.223

HMean 0.80 3.245 0.74 2.732
HL 0.65 5.021 0.42 4.988

DBHMean 0.61 9.285 0.61 5.771
DBHAvg 0.49 12.478 0.47 7.528

BATotal 0.92 3.060 0.88 3.549
BAMean 0.42 0.581 0.52 0.033

ECC 0.79 0.083 0.73 0.107
VOLHTotal 0.94 23.670 0.90 30.362
VOLHPole 0.63 4.409 0.32 6.108

VOLHSmsaw 0.76 25.553 0.41 57.429

VOLHLrgsaw 0.72 37.955 0.80 32.448
SD 0.79 70.504 0.58 91.607

Table 5. Summary of regression analysis for model training and validation datasets; highlighted vari-
ables are those for which both model and validation results were satisfactory (p ≤ 0.0001, α = 0.05).
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ceeding the p ≤ 0.05 criteria although both terms maintained
a nonlinear relationship with the remaining independent
variables for each respective model.

Since lidar inventories can only directly provide an esti-

mate of stem density and vegetation height (Dubayah and
Drake 2000), lidar derived-height metrics are necessary to
help quantify relationships between lidar data and forest in-
ventory variables. Descriptions of lidar height distributions
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Fig. 3. Plotted regression results for seven recommended models including maximum canopy height (a), mean canopy height (b), qua-
dratic mean DBH (c), ellipsoidal crown closure (d), total basal area (e), total tree volume (f), and large saw-wood volume (g).



for discrete vertical subclasses also helped mitigate multi-
collinearity among covariate terms for our study. Other
methods, however, have been analyzed to address variable
collinearity issues such as identification of canonical vari-
ables and seemingly unrelated regression analysis (Naesset
et al. 2005).

Consideration of error sources
The relative ability of a least squares simple multiple re-

gression model that uses lidar-derived height metrics to esti-
mate forest characteristics is appreciably dependent on the
error budgets associated with ground-collected GPS data (for
establishing plot centers) and the planimetric accuracy of the
acquired lidar data. Shifts in coordinate position between
ground and lidar data can result in an erroneous estimation
of actual plot conditions. Another source of error could be
attributed to the fixed-radius plot method for field measure-
ments. When lidar height data are extracted based on the
fixed-radius plot, canopy height values associated with
neighboring stems could be incorporated into the plot height
distributions used to derive the lidar metrics.

Other identifiable sources of error include inflated stem
height variances associated with large post spacing (i.e.,
2 m) and missed tree tops (Zimble et al. 2003). Further, oc-
clusion of ground and subcanopy returns can be greatest in
areas where high percent canopy closure (Andersen et al.
2003), larger scan angle (Holmgren et al. 2003), and diverse
topographic conditions are present, resulting in a combina-
tion of ground characteristics that may decrease the accurate
determination of ground surface and can also result in under
estimation of canopy heights. The nominal post spacing of
2.0 m used in this study is practical for stand-level mapping
of select forest characteristics based on RMSE values ob-
tained for maximum and mean canopy height (~3.0 m for
both model and validation).

General limitations of practical application
While the models reported for estimation of biophysical

characteristics account for a diverse range of species, topog-
raphy, and stand conditions, they do not take into account
the potential presence of or for stands dominated by decidu-
ous components. Ellipsoidal crown closure, volume, and
basal area estimations are applicable only for coniferous
species as they relate to this study. Further, consideration
must be given to the parameters associated with the collec-
tion of field data used to calculate dependent metrics. By in-
corporating a field-measured minimum diameter threshold of
12.7 cm, smaller trees were effectively left out of the analy-
sis and interpretation of results. Measurement of all stems
present within the field plots may increase model-explained
variability for several dependent variables.

Lastly, while general characteristics among lidar sensors
can be quantified, there is still significant variation in sensor
design and configuration between lidar instruments (Lim et
al. 2003b). Lidar data acquired with a different sensor or
sampling scheme may introduce a potential source of model
inadequacy or prediction bias that cannot be accounted for
with a single regression equation applied to one specific site.
However, for the purposes of large-scale areal averaging of
quantifiable forest biocharacteristics, such models can pro-
vide robust measures (Nelson et al. 2003), particularly if a

significant amount of site variability from multiple samples
can be incorporated into each regression model (Naesset et
al. 2005).

Summary and future work
The primary objective of this study was to determine

whether lidar data obtained from noncontiguous geographic
areas with varying species and structural composition,
silvicultural practices, and topography could be used in a
single regression model to produce accurate estimates of
commonly obtained forest inventory attributes. As discussed
previously, operational use in North America for quantifica-
tion of stand inventory variables is still limited by both cost
and the scientific uncertainty of large-scale application and
associated accuracy issues. Identification of a common equa-
tion to model a specific biophysical property for mixed-
conifer stands common throughout the Rocky Mountain re-
gion can aid in more efficient assessments of specific eco-
system-driven processes and monitoring objectives. With the
lidar acquisition parameters in this study, regression of lidar-
derived height metrics against field-measured variables re-
sulted in identification of seven inventory variables that
could be estimated with a common model for a range of
stand and topographic conditions over a diverse study area.

The regression equations presented here have been incor-
porated into a GIS framework to produce spatially continu-
ous raster-based maps of forest attributes. These maps will
be used in future work involving the fusion of lidar-derived
structural attributes with multispectral data for applications
in carbon storage and forest fuel estimation.
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