
INFINITE SERIES:  Convergence/Divergence Tests 
 

The Sandwich Theorem for Sequences: 
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The nth Term Test for Divergence: 
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The Non-Decreasing Sequence Theorem: 
 

 A non-decreasing sequence converges if and only if its terms are bounded from above.  If all the terms are less 
than or equal to M, then the limit of the sequence is less than or equal to M as well. 

 
Comparison Test for Series of Non-negative Terms: 
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Integral Test: 
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Limit Comparison Test: 
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Simplified Limit Comparison Test: 
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The Ratio Test: 
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The nth- Root Test: 
 

Limit of the nth term of a convergent series. 

 If ∑ converges, then a
∞

=1n
na n  .0→

 
nth-term test for divergence: 
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The Absolute Convergence Theorem: 
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How to Test a Power Series for Convergence: 
 

1.  Use the Ratio Test (or nth -Root Test) to find the interval where the series converges absolutely. 
 
2.  If the interval of absolute convergence is finite, test for convergence or divergence at each of the two 

endpoints.  Use a Comparison Test, the Integral Test, or the Alternating Series Theorem, not the Ratio Test 
nor the nth –Root Test. 

 
3.  If the interval of absolute converge is a - h < x < a + h, the series diverges (it does not even converge  

conditionally) for x - a  > h because for those values of x, the nth term does not approach zero. 
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