Permutations and Combinations

Туре	Formulas	Explanation of Variables	Example
Permutation with repetition (Use permutation formulas <i>when order</i>	n ^r	Where n is the number of things to choose from, and you choose r of them.	A lock has a 5 digit code. Each digit is chosen from 0-9, and a digit can be repeated. How many different codes can you have?
<i>matters</i> in the problem.)			n = 10, r = 5 $10^5 = 100,000 \text{ codes}$
Permutation without repetition (Use permutation	$\frac{n!}{(n-r)!}$	Where n is the number of things to choose from, and you choose r of them. Sometimes you can see the following notation for the same concept:	How many ways can you order 3 out of 16 different pool balls? n = 16, $r = 3$
formulas <i>when order</i> <i>matters</i> in the problem.)		$P(n,r) = {^n}P_r = {_n}P_r = \frac{n!}{(n-r)!}$	n = 16, r = 3 $\frac{16!}{(16-3)!} = 3,360 ways$
Combination with repetition (Use combination formulas <i>when order</i>	$\frac{(n+r-1)!}{r!(n-1)!}$	Where <i>n</i> is the number of things to choose from, and you choose <i>r</i> of them.	If there are 5 flavors of ice cream and you can have 3 scoops of ice cream, how many combinations can you have? You can repeat flavors.
<i>doesn't matter</i> in the problem.)			$n = 5, r = 3$ $\frac{(5+3-1)!}{3! (5-1)!} = 35 \ combinations$
Combination without repetition (Use combination	$\frac{n!}{r!(n-r)!}$	Where n is the number of things to choose from, and you choose r of them. Sometimes you can see the following notation for the same concept:	The state lottery chooses 6 different numbers between 1 and 50 to determine the winning numbers. How many combinations are possible?
formulas <i>when order</i> <i>doesn't matter</i> in the problem.)		$C(n,r) = {}^{n}C_{r} = {}_{n}C_{r} = {\binom{n}{r}} = \frac{n!}{r!(n-r)!}$	n = 50, r = 6 $\frac{50!}{6! (50 - 6)!} = 15,890,700 \ combinations$

Examples

1) Mr. Smith is the chair of a committee. How many ways can a committee of 4 be chosen from 9 people given that Mr. Smith must be one of the people selected?

Mr. Smith is already chosen, so we need to choose another 3 from 8 people. In choosing a committee, order doesn't matter, so we need the combination without repetition formula.

 $\frac{n!}{r!(n-r)!} = \frac{8!}{3!(8-3)!} = 56$ ways

2) A certain password consists of 3 different letters of the alphabet where each letter is used only once. How many different possible passwords are there?

Order does matter in a password, and the problem specifies that you cannot repeat letters. So, you need a permutations without repetitions formula. The number of permutations of 3 letters chosen from 26 is

 $\frac{n!}{(n-r)!} = \frac{26!}{(26-3)!} = 15,600$ passwords

3) A password consists of 3 letters of the alphabet followed by 3 digits chosen from 0 to 9. Repeats are allowed. How many different possible passwords are there?

Order does matter in a password, and the problem specifies that you can repeat letters. So, you need a permutations with repetitions formula.

The different ways you can arrange the letters = $n^r = 26^3 = 17,576$ The different ways you can arrange the digits = $n^r = 10^3 = 1,000$ So the number of possible passwords = $17,576 \times 1,000 = 17,576,000$ passwords

4) An encyclopedia has 6 volumes. In how many ways can the 6 volumes be placed on the shelf?

This problem doesn't require a formula from the chart. Imagine that there are 6 spots on the shelf. Place the volumes one by one.

The first volume to be placed could go in any 1 of the 6 spots. The second volume to be placed could then go in any 1 of the 5 remaining spots, and so on. So the total number of ways the 6 volumes could be placed is $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$ ways