CORE ENVIRONMENTAL MONITORING FORM

PLEASE PRINT LEGIBLY

<table>
<thead>
<tr>
<th>Site ID #</th>
<th>Sample Depth (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(not total depth)</td>
</tr>
</tbody>
</table>

Instrument Calibration: Conducted within 24 hours of sampling. Store standard solutions and calibrate at room temperature.

<table>
<thead>
<tr>
<th>Calibration</th>
<th>Date</th>
<th>Time</th>
<th>Standard Value</th>
<th>Standard Temp (°C)</th>
<th>Pre-Test Calibration Initial Reading</th>
<th>Calibrated To</th>
<th>Post-Test Calibration Initial Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity/Salinity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Observations:

- **FLOW SEVERITY:** 1-no flow 2-low 3-normal 4-flood 5-high 6-dry
- **ALGAE:** 1-absent 2-rare (<25%) 3-common (26-50%) 4-abundant (51-75%) 5-dominant (>75%)
- **WATER SURFACE:** 1-clear 2-scum 3-foam 4-debris 5-sheen
- **WATER CONDITIONS:** 1-calm 2-ripples 3-waves 4-white caps
- **PRESENT WEATHER:** 1-clear 2-cloudy 3-overcast 4-rain
- **DAYS SINCE LAST SIGNIFICANT PRECIPITATION (runoff)**
- **RAINFALL ACCUMULATION** (inches within the last 3 days)
- **WATER COLOR:** 1-no color 2-light green 3-dark green 4-tan 5-red 6-green/brown 7-black
- **WATER CLARITY:** 1-clear 2-cloudy 3-turbid
- **WATER ODOR:** 1-none 2-oil 3-acrid (pungent) 4-sewage 5 rotten egg 6-fishy 7-musky

Coastal Area Salinity Tests and Observations:

- **SALINITY** (ppth)
- **TIDE STAGE:** 1-low 2-falling 3-slack 4-rising 5-high

Core Tests and Measurements:

- **AIR TEMPERATURE (°C)**
- **SECCHI DISC TRANSPARENCY** (meters)
 - Average
 - Disappears __________ Appears __________
- **TOTAL DEPTH** (meters)
- **TRANSPARENCY TUBE** (meters)
- **WATER TEMPERATURE (°C)**
- **DISSOLVED OXYGEN** (mg/L)
 - Average
 - 1st titration __________ 2nd titration __________
- **CONDUCTIVITY** (μS/cm)
- **pH** (standard units)

TOTAL TIME SPENT SAMPLING AND TRAVELING

<table>
<thead>
<tr>
<th>Minutes</th>
<th>Miles</th>
<th>TOTAL NUMBER OF PARTICIPANTS</th>
</tr>
</thead>
</table>

I certify that all procedures, including the items listed in the Quality Control Checklist on the following page and in the manual, have been followed.

CERTIFIED COMMUNITY SCIENTIST’S SIGNATURE

DATE

Prepared in cooperation with the Texas Commission on Environmental Quality and the United States Environmental Protection Agency. Revised February 7, 2024.
CORE FIELD QUALITY CONTROL CHECKLIST

Community scientists are required to check all applicable boxes for each monitoring event to verify the procedures are followed. If the monitoring event fulfills a Field Audit Session, the trainer must observe the community scientist conducting the monitoring event and document observations in the comments field. The trainer will also sign to verify Field Audit Session was conducted.

General Procedures
- Gloves were worn or hand sanitizer was applied throughout.
- No chemical reagents used for testing were expired and all chemical reagents were stored in an environment protected from extreme weather prior to use.
- Sampling was conducted at approximately the same time/day as previous sampling events at this site, preferably before noon or after 4pm.
- Monitoring sample was collected from the centroid of flow with minimal streambed disturbance.
- All equipment was rinsed 2X with sample water before the test was conducted.

Field Observations
- Algae: Recorded algae observed on and below the water surface.
- Water Color: Observed water color in a plastic cup or bucket with a white background.
- Water Clarity: Observed the relative cloudiness of the water from bridge or banks.
- Water Odor: Tested by wafting from plastic cup or bucket.
- Present Weather: Marked cloudy if there is at least one cloud in the sky.

Instrument Calibration
- The instruments/meters were calibrated within 24 hours of monitoring and conducted in a temperature-controlled environment.
- All meters were held in center of beaker not touching the bottom or sides and stirred for 2 minutes before recording the reading.
- All meters were turned on/off while submerged in solution.
- Meters were rinsed with DI water and caps were replaced immediately after use.
- Pre- and post-test calibration were conducted and the difference between the “Calibrated To” value of the pre-test calibration and “Post-Test Calibration Initial Reading” is within the error limit listed below for each parameter:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Error limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity</td>
<td>± 20% of calibration standard solution</td>
</tr>
<tr>
<td>Salinity</td>
<td>± 1 ppt</td>
</tr>
<tr>
<td>Dissolved Oxygen (Standard Core)</td>
<td>± 0.5 mg/L</td>
</tr>
<tr>
<td>Dissolved Oxygen (Probe Core)</td>
<td>± 6% saturation</td>
</tr>
<tr>
<td>pH (Probe Core only)</td>
<td>± 0.5 s.u.</td>
</tr>
</tbody>
</table>

Core Tests and Measurements
- Sample Depth: The sample depth is either 0.3 m or 1/3 of the total depth.
- Air Temperature: Thermometer placed in shade.
- Transparency Tube: Be careful to not scrape the streambed or disturb or kick up sediment.
- Secchi Disc Transparency: Secchi lowered in water shaded from the sun. Record average then lower to bottom to get total depth reading.
- Water Temperature: If using thermometer, air temperature was measured first.

Dissolved Oxygen:
- Bottles rinsed 2X with sample water and titration vials rinsed 2X with fixed solution.
- Bottles filled so the meniscus is resting on the line.
- Lids capped underwater with no air bubbles.
- Duplicate sample conducted and titration values within 0.5 mg/L of each other.
- Chemical reagent bottles completely inverted when adding drops to prevent interference from air

pH:
- The pH vial cap was removed and the tube was held up against a white background before viewing.
- The amount of sample water needed in the test tube was determined based on the type of pH viewer being used.
- The test tube was filled so the meniscus is resting on the line.

Refractometer (tidal-influenced saltwater only)
- Time was allowed for the temperature of the sample water to stabilize before the salinity measurement was recorded.
- Instrument was held up to a light source when gathering the salinity measurement.

Field Audit Session
This section should be filled out by a certified trainer ONLY if a Field Audit Session was conducted. Field Audit Sessions are required at a minimum every two years.

Legible Trainer Full Name: _________________________ Trainer Signature: _________________________
Trainer Comments: _________________________